On some partial data Calderón type problems with mixed boundary conditions
نویسندگان
چکیده
In this article we consider the simultaneous recovery of bulk and boundary potentials in (degenerate) elliptic equations modelling conducting media with inaccessible boundaries. This connects local nonlocal Calderón type problems. We prove two main results on these problems: On one hand, derive Runge approximation results. Building these, deduce uniqueness for localized potentials. other construct a family CGO solutions associated corresponding equations. These allow us to arbitrary bounded, not necessarily The are constructed by duality new Carleman estimate.
منابع مشابه
global results on some nonlinear partial differential equations for direct and inverse problems
در این رساله به بررسی رفتار جواب های رده ای از معادلات دیفرانسیل با مشتقات جزیی در دامنه های کراندار می پردازیم . این معادلات به فرم نیم-خطی و غیر خطی برای مسایل مستقیم و معکوس مورد مطالعه قرار می گیرند . به ویژه، تاثیر شرایط مختلف فیزیکی را در مساله، نظیر وجود موانع و منابع، پراکندگی و چسبندگی در معادلات موج و گرما بررسی می کنیم و به دنبال شرایطی می گردیم که متضمن وجود سراسری یا عدم وجود سراسر...
Mixed Problem with Nonlocal Boundary Conditions for a Third-order Partial Differential Equation of Mixed Type
We study a mixed problem with integral boundary conditions for a third-order partial differential equation of mixed type. We prove the existence and uniqueness of the solution. The proof is based on two-sided a priori estimates and on the density of the range of the operator generated by the considered problem. 2000 Mathematics Subject Classification. 35B45, 35K20, 35M10.
متن کاملThe Study of Some Boundary Value Problems Including Fractional Partial Differential Equations with non-Local Boundary Conditions
In this paper, we consider some boundary value problems (BVP) for fractional order partial differential equations (FPDE) with non-local boundary conditions. The solutions of these problems are presented as series solutions analytically via modified Mittag-Leffler functions. These functions have been modified by authors such that their derivatives are invariant with respect to fractional deriv...
متن کاملOn the Asymptotic Behavior of Elliptic Problems in Periodically Perforated Domains with Mixed-type Boundary Conditions
Using the periodic unfolding method, we analyze the asymptotic behavior of a class of elliptic equations with highly oscillating coefficients, in a perforated periodic domain. We consider, in each period, two types of holes and we impose, on their boundaries, different conditions of Neumann and/or Signorini types. The limit problems contain additional terms which capture both the influence of t...
متن کاملMixed Finite Element Methods for Problems with Robin Boundary Conditions
We derive new a-priori and a-posteriori error estimates for mixed nite element discretizations of second-order elliptic problems with general Robin boundary conditions, parameterized by a non-negative and piecewise constant function ε ≥ 0. The estimates are robust over several orders of magnitude of ε, ranging from pure Dirichlet conditions to pure Neumann conditions. A series of numerical expe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Differential Equations
سال: 2021
ISSN: ['1090-2732', '0022-0396']
DOI: https://doi.org/10.1016/j.jde.2021.04.004